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Abstract--We present a unifying theory for the development and distribution of strain markers and kinematic 
indicators in zones of general shear, and thus provide a framework in which data previously considered 
contradictory may be understood. Rigid and deformable porphyroclast systems, including o, 6 and complex a-~ 
grains are potential indicators of both strain and flow. The shapes and distribution of such porphyroclast systems 
may be used to distinguish among different tectonic regimes. 

General shear is divided into two fields: sub-simple shear, in which the rotational component of the strain is less 
than that for simple shear, and super-simple shear, in which the rotational component is greater than for simple 
shear. Sub-simple shear may involve narrowing or broadening of shear zones. Super-simple shear regimes are 
possible in local regions such as the vicinities of deformable porphyroclasts, but must be enclosed by regimes of 
sub-simple shear. 

The polar Mohr constructions for finite deformation and flow are useful to analyze general shear in theory. The 
hyperbolic net is employed for practical plotting of real data and derivation of the kinematic vorticity number, 
W n. This number represents the relative contributions of pure and simple shear in steady flow. In nature, 
deformation is thought to build up and decay by processes that may invalidate the assumption of constant flow 
regime. We therefore introduce the concept of accelerating deformation and analyze the implications of non- 
steady flow for the shearing histories of deformed objects. 

INTRODUCTION 

STRUCTURAL geologists possess a variety of tools for the 
strain and kinematic analysis of deformed rocks. How- 
ever, few workers have been able to quantify defor- 
mation states and paths in the same rocks, partly owing 
to the nature of the materials involved. Finite strain is 
easy to measure in low-grade rocks containing linear or 
angular markers that obey the March model (1932), or 
elliptical objects such as reduction spots (Ramsay 1967), 
but such rocks rarely contain a record of the strain path. 
To develop incremental strain markers such as fibrous 
beards on pebbles, relatively rigid objects are required, 
but such objects do not accurately record finite strain. 
Rotated structures such as dynamically recrystallized 
porphyroclasts are common in high strain mylonites with 
a strong fabric (Simpson & Schmid 1983, Hanmer & 
Passchier 1991), but these rocks often lack cumulative or 
even incremental strain markers. As pointed out by 
Passchier (1986) and re-emphasized by Choukroune et 
al. (1987), the quantitative relations between non- 
coaxiality and structural asymmetry have remained un- 
certain. Furthermore, theoretical relationships between 
deformation state and path have been obscured in the 
past by measurement in different reference frames. 
Finite strains were traditionally plotted on quadratic 
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Mohr diagrams (usually labelled 2, Y or 2', 7'), whereas 
infinitesimal extensions e were plotted against engi- 
neer's shear strain 7/2. 

In this work, deformation refers to the transformation 
of material from one geometric or mechanical state to 
another and shear refers to any deformation that 
changes the angles between intersecting lines. Finite and 
infinitesimal strains are both represented more simply in 
terms of stretch S, extension e, and shear strain Y, and 
the relationship between deformation state and path is 
clarified. We show how strain markers, fabric elements 
and objects traditionally used as simple shear sense 
indicators are more easily explained by general shear in 
a high strain zone. In addition, these markers yield 
information about the velocity gradients leading to that 
state of general shear, and the accelerations involved in 
the waxing and waning stages of the flow. 

GENERAL SHEAR 

Deformation state 

Since the early work of Sorby (1855), Harker (1885) 
and Wettstein (1886) structural geologists have tended 
to rely on three simplistic deformation models: pure 
shear, simple shear and rigid rotation. These terms have 
strict definitions in classical mechanics but are used more 
casually in structural geology. Pure shear is used to 
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denote any deformation whose three principal stretch- 
ing directions are eigenvectors (directions of no ro- 
tation). Simple shear is a deformation whose 
eigenvectors are confined to a plane--the shear plane. 
For rigid rotation, there is just one eigenvector--the 
rotation axis. 

Ramsay & Graham (1970) demonstrated that simple 
shear is the only constant volume strain regime that can 
occur in straight, parallel-sided shear zones bounded by 
undeformed wall rocks unless there is a discontinuity 
(fault) along the boundary. More general deformation 
states were first discussed by Ramsay & Wood (1973) 
and Sanderson (1976), who examined the superposition 
of plane strain on an initial uniaxial compaction. Mat- 
thews et al. (1974) factorized deformation into pure 
shear and orthogonal simple shear along bedding 
planes. Other work on general deformation includes: 
curved shear zones (Coward 1976); dikes that intruded 
during combined shear and extension (Escher et al. 
1975); non-coaxiality in progressive deformation 
(Means et al. 1980); and shear zones with non-parallel 
sides and terminations (Simpson 1983). 

De Paor (1983) defined two fields of general shear-- 
namely sub-simple shear, in which the rotational com- 
ponent of strain is less than that for the simple shear of 
the same intensity, and super-simple shear, in which the 
rotation is greater than for simple shear. Some authors 
ignore the latter category and use the term general shear 
for the former. Although super-simple shears are gener- 
ally confined to special places such as the interiors of 
deformable porphyroclasts or regions of particulate 
flow, they may constitute an extremely important com- 
ponent of heterogeneous deformation regimes (Talbot 
& Jackson 1987). 

Sub-simple shear zones may become narrower or 
broader. Reduction of a shear zone's thickness may be 
achieved by (a) increase in length, (b) reduction in 
volume, or (c) extension in the third dimension (i.e. 
transpression, Sanderson & Marchini 1984). In this 
paper we mainly consider the temporal evolution of a 
parallel-sided shear zone's profile plane, but much of the 
discussion may be applied to spatial gradients in shear 
zones that have non-parallel sides. 

Mohr circle for strain 

The Mohr circle construction for strain serves as a 
powerful tool for studying general shear. The traditional 
Mohr construction (Brace 1961) employed a quadratic 
2', 7' reference frame and was limited to irrotational 
strains. The construction for strain introduced by De 
Paor (1983) is simple and very similar in principle to the 
well-known Mohr circles for stress. In the stress case, the 
Cartesian co-ordinates of each point on the circle rep- 
resent the normal and shear stresses acting on a certain 
plane, whereas in De Paor's construction for strain the 
polar co-ordinates of a point on the circle represent the 
stretch and rotation of a certain line (Fig. la). For 
general strain in shear zones, the zone boundary is the 
baseline and the normal to the shear zone is then the 

polar co-ordinate reference axis or zero direction (Fig. 
lb). In this reference frame, the shear zone boundary is 
clearly a direction of no rotation, i.e. an eigenvector. To 
construct the Mohr circle, the baseline stretch vector ~1 
in geographical space is rotated through 90 ° and marked 
along the reference axis. This point has polar co- 
ordinates (~l, 0) in strain space. The deformed normal to 
the shear zone is marked at (So, ~p); being the only point 
representing a stretched line simultaneously in geo- 
graphical space and strain space, it is termed the anchor 
point. The circle is drawn diametrically through (~1, 0) 
and (So, ~P) (Fig. lb). In the special case of irrotationai 
strain this circle's center falls on the reference axis. 

The stretch and rotation of a particular material line 
are represented by a point (S, a) on the perimeter of the 
circle (Fig. lc). Given this point, the corresponding line 
orientation in geographical space is obtained by pivoting 
the stretch vector about its second intersection with the 
circle until it passes through the anchor point (Fig. lc). 
This gives the line's final orientation fl' in geographical 
space. Its initial orientation fl differs from fl' by a, the 
rotation of the line. 

The points on the circle that are furthest from and 
nearest to the origin represent the lines of maximum and 
minimum stretch, $1 and S 2. They were initially 90 ° apart 
in geographical space and, having undergone equal 
rotations ~o, they are also orthogonal after deformation; 
hence they have suffered no net shear strain (Fig. ld). 
Any other pair of diametrically opposite points on the 
circle represents the stretch and rotation of a pair of 
initially orthogonal lines in geographical space and the 
angle they subtend at the origin is their angular shear ~p 
(Fig. le). Maximum angular shear is recorded by the 
pair of lines that were initially oriented symmetrically at 
___45 ° to the principal directions (Fig. lf). Their final 
orientations are indicated in Fig. l(g). In Fig. l(h) the 
two points where the circle intersects the reference axis 
represent the eigenvectors (~1, 0) and (~2, 0) of this 
general shear. The stretches ~l and ~2 are the corre- 
sponding eigenvalues. The corresponding directions in 
geographic space are obtained by the pivoting manouver 
described above which yields the shear zone boundary 
and a second direction inclined in the displacement 
direction (Fig. lh). Note that this figure illustrates the 
case of a narrowing sub-simple shear zone. In the 
opposite case of a broadening zone, the eigenvalue ~l 
would be less than ~2- 

Different sign conventions for Mohr constructions are 
advocated by various authors (see summary in Allison 
1984). There are eight possible choices of sign conven- 
tion; we prefer the one described above because: (1) it 
reduces the construction steps to a minimum; (2) the 
anchor point links strain space to geographic space; (3) 
rotational strains are measured in the same sense in 
strain space and geographical space; and (4) stretches 
and rotations of lines are referred to the final state 
preserved in the rock. By comparison, the polar co- 
ordinates of Means' (1982, 1983) construction are the 
stretch and the negative of the rotation of a line. His 
circle's pole, which plots diametrically opposite our 
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anchor point, identifies the initial orientation of the 
corresponding direction in geographical space. 

Deformation path 

Deformation is a progressive phenomenon that fol- 
lows a particular deformation path. The path is a closed 
loop in stress-strain space in the case of elastic behavior; 
alternatively an open-ended deformation path may lead 
either to fracture and rupture of the material, or to 
permanent strain. Ramberg (1975) derived particle 
paths for various combinations of coaxial and non- 
coaxial flow. Particle paths represent the cumulative 
changes in position of points during progressive defor- 
mation that is built up by identical increments of infinite- 
simal strain (Fig. 2). A consequence of this time 
invariance is that the displacement of a particle is a 
function of position only. When one particle reaches a 
position previously occupied by another, its displace- 
ment is identical to that of its predecessor. Ramberg 
(1975) showed that particle paths could be open-ended 
or form closed loops. Weijermars (1991) illustrated 
Ramberg's particle paths for the special case where 
stress and infinitesimal strain axes are coincident (i.e. 
where there is no material anisotropy). 

Progressive stretch histories and rotations of lines 

The stretching histories of lines during progressive 
shear are complex (Flinn 1962). Ramsay (1967) showed 
that lines oriented close to the S~ direction may lengthen 
throughout their deformational history whereas lines 
close to the $3 axis may shorten first and then lengthen. 
The rotation histories of lines during general shear are 
also complex. In progressive pure shear, material lines 
tend to rotate away from $3 towards S~, veering toward 
$2 en route (Flinn 1962). Rotation increments are 
greatest at a high angle to all three principal directions 
and drop to zero along each principal direction. In sub- 
simple shear, there are two unequal fields of opposite 
rotation, bounded by the eigenvectors. Lines parallel to 
the eigenvectors do not rotate. Simple shear causes all 
material lines oblique to the flow plane to rotate toward 
the flow direction. One circular section of the simple 
shear strain ellipsoid is attached to the flow plane, the 

(b) 

Fig. 2. Particle paths, after Ramberg (1975). (a) Pure shear, (b) 
sub-simple shear, (c) simple shear, (d) super-simple shear, (e) rigid 

rotation. 

other begins perpendicular to it and progesssively ro- 
tates toward the flow direction. The long axis of the 
strain ellipsoid always bisects the acute angle between 
the circular sections, so it too rotates toward the flow 
direction. 

The rate of rotation of lines increases with obliquity to 
the flow plane and reaches a maximum in the perpen- 
dicular plane. Once lines pass through this plane, their 
rate of rotation slows down so they approach but never 
reach the flow plane. The rotation rates of the strain 
ellipsoid axes also decelerate, although not as fast. In 
simple shear, material lines which lie along the S~ and $3 
axes of the strain ellipsoid rotate faster than the strain 
ellipsoid axes; thus material constantly flows through 
two principal planes of the strain ellipsoid. After passing 
through the principal plane containing St, a material 
line's rotation rate is reduced and soon becomes slower 
than the rotation of the principal axes. Thus the angle 
subtended between a material line and the immaterial 
long axis of the strain ellipsoid passes through a maxi- 
mum value and then reduces. The implications of this 
theoretical result for practical analysis of fabrics are 
significant. A small rigid elongate crystal will tend to 
grow fibrous tails as it rotates in progressive simple 
shear. These tails are deflected towards the S~ direction 
and so their shape varies with time in a complex way. In 
super-simple shear, all lines rotate in the same sense but 
at different, pulsating rates. 

Planes' are rotated and deformed in a complex way 
during progressive deformation (March 1932, Owens 
1973). Even in progressive pure shear, deformation 
involves rotation in any plane that is oblique to all three 
principal axes. Distortion is accompanied by rotation of 
the plane's pole and by spin about that pole. Even if 
volume is conserved, areas of oblique planes, which may 
be calculated using De Paor's (1983) tensor, are pro- 
gressively altered. Some are shrunk, then restored, and 
finally spread beyond their initial area. Poles to planes of 
no area change form loci similar to directions of no 
longitudinal strain. 

During shear deformation, lines oblique to the princi- 
pal directions rotate out of orthogonality to their cross- 
sectional planes and thus become sheared. After a finite 
simple shear, some directions are sheared dextrally and 
others sinstrally (Fig. 3). Furthermore, during defor- 
mation some lines' shear strains progressively increase 
in magnitude whereas others decrease. Eventually, each 
sinistrally sheared line in a dextral shear zone attains a 
maximum shear value, reduces its shear strain to zero as 

max . r in increasing T ~clec eas g 
• zero.. ~ zero 

d e c r e a s ' ~ / ~  ~ ~ - ' ~  increasing 

max ,.,..- -'---,,Jr "."max 
Fig. 3. History of shear strain of individual lines during progressive 
dextral simple shear. 'T's represent initially orthogonal lines. Depend- 
ing on orientation, shear strain may be increasing or decreasing in 

current increment of deformation. 
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it passes through the long axis of the strain ellipsoid and 
then becomes sheared dextrally. Similarly, some dex- 
trally sheared lines reduce their shear strain to zero as 
they pass through the short axis of the strain ellipsoid 
and then become sheared sinistrally. Thus it should not 
be surprising that individual kinematic indicators in a 
materially heterogeneous rock show shear sense 
opposite to the bulk shear direction. In progressive pure 
shear, the shear strain builds up continuously and mon- 
otonously; unlike the case of simple shear, there are no 
turning points in the magnitude of shear strain. For sub- 
simple shear, there is one turning point. Shear strains 
pulsate for super-simple shear. 

Mohr construction for infinitesimal strain 

In the case of infinitesimal strain, the Mohr circle is 
centered near the unit stretch (S = 1.0) position on the 
reference axis, illustrated schematically in Fig. 4(a). A 
many-fold enlargement of this circle is shown in 
Fig. 4(b). Stretch, S, and extension, e, are related as 
S =  l+e ,  so the vertical axis represents extension 
measured as +e and - e  relative to a new origin at 
S = 1.0. Rotation angles are still measured about the 
S = 0 origin. Angles measured in radians around a curve 
are defined in terms of arc-length per unit radius, and 
very small arcs approach straight lines, thus radian 
values plot approximately along the horizontal axis 
through the new origin at e = 0. The old polar reference 
frame can be approximated, therefore, by a Cartesian 
system with e as ordinate and a as abscissa (Fig. 4b). 

The directions of maximum and minimum extension 

(a) 
(S,ct) 

. . . . . . . . . . .  iraclians) 

t 

(c) E 
E 1 

U1 ~ O. 
~/max 1 ~max ...... 

E2 

Fig. 4. Relationship between finite and infinitesimal Mohr construc- 
tions. (a) For very small strains, finite Mohr circle (in S-a reference 
frame) is infinitesimal (exaggerated here for clarity). Arrow depicts 
magnification of view of top left corner of slightly deformed unit 
square. (b) Dotted line is a new a reference line at distance of one unit 
up from old (S=0) origin. In new reference frame, co-ordinates are 
extension e and rotation in radians, a. (c) Positions of el, e2, 7max (see 
text). U 1, U 2 represents axes of the displacement ellipse (see Fig. 5). 
(d) Mohr circle centered on origin. There is no infinitesimal rotation 
or dilatation; co-ordinates of any point on its perimeter are e and 
y/2 (= a/2). The latter is justified because small angles measured in 

radians approximate their tangents. 
/ 

el and g2, plot on the infinitesimal Mohr circle's vertical 
diameter (see Fig. 4c). They share the same angle of 
rotation ~, so they are therefore directions of no infinite- 
simal shear strain. All other pairs of orthogonal direc- 
tions plot diametrically opposite on the Mohr circle and 
the difference between their a co-ordinates represents 
their angular shear ~ and, because small angles approxi- 
mate to their tangents, the angular difference equals the 
infinitesimal shear strain, 7. Horizontally opposite 
points on the circle represent directions of maximum 
shear strain, which are also directions of mean extension 
e. When the Mohr circle is centered on the origin, there 
is no infinitesimal rotation or dilatation; co-ordinates of 
any point on its perimeter are then the components of 
longitudinal strain and 'engineer's shear strain', e and 
7/2 (Fig. 4d). 

The points U1 and U2 farthest from and nearest to the 
origin on the Mohr circle for infinitesimal strain rep- 
resent the axes of an ellipse termed the displacement 
ellipse (Fig. 5) (De Paor 1983). The displacement ellipse 
is comparable to the strain ellipse in that it represents a 
general tensor quantity (the displacement gradients ten- 
sor), but it is also comparable to the stress ellipse in that 
its principal axes need not be of the same sign. One axis 
may represent an outward directed displacement and 
the other an inward directed displacement, as in the case 
where the Mohr circle encloses the origin. 

The displacement ellipse is an important concept in 
progressive deformation studies. For non-coaxial defor- 
mations, the directions of maximum and minimum dis- 
placement are not parallel to the directions of maximum 
and minimum extension. For example, maximum dis- 
placement parallels the boundary of a simple shear zone, 
but maximum extension is at 45 ° to the boundary. 
Furthermore, the directions of maximum displacement 
and maximum incremental shear strain are both oblique 
to the boundary of a general shear zone. 

Velocity gradients and flow 

The term flow is widely used in continuum mechanics 
to denote the process of permanent, non-elastic, or 
time-dependent strain. Flow is thus the instantaneous 
rate of infinitesimal strain. Flow regimes are coaxial if 
successive increments of infinitesimal strain are parallel 
and steady if they are also of equal magnitude. Time 
derivatives of e and a in the Mohr circle construction for 
infinitesimal strain plot as strain rates, k, along the 

initial circle 

~ d i s ~ p  displacement ellipse 

l a c e ' s  
Fig. 5. The displacement ellipse on right is the locus of all displacement 
vectors joining points on the initial unit circle to the corresponding 
points on the strain ellipse on left. Note that some displacement 

vectors point outwards and others inwards. 
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~2 
Fig. 6. The flow Mohr  circle, kl, kz are directions of maximum and 
minimum extension rate and share the same angular velocity gt. UI 

and 1-)2 are displacement rate axes. 

vertical axis and angular volocities, t~, along the horizon- 
tal axis (Fig 6). Division by time modifies the reference 
frame without affecting geometrical relations in Mohr 
space; the Mohr circle now represents flow velocity 
gradients at an instant in the deformation history. 

The flow ellipse is the time derivative of the displace- 
ment ellipse. It is important conceptually because it 
highlights the fact that there is no unique flow plane in 
general shear. In progressive simple shear, the flow 
Mohr circle passes through the origin (k = 0). The flow 
ellipse's short axis is of zero length, and its shape 
degenerates to a line representing the flow direction. 
The flow Mohr circle shows that simple shearing is not 
just a vectorial process, but rather is a tensor phenom- 
enon. 

The directions of maximum and minimum extension 
rate, kl and k2, plot on the flow Mohr circle's vertical 
diameter (Fig. 6). They share the same angular velocity 
4,  so they maintain orthogonality in the current incre- 
ment of deformation and are therefore directions of no 
shear strain rate. Although material in these directions 
does not shear, it does rotate at the mean rate of ~. For 
steady flow conditions, the kl and k 2 directions are fixed 
in space as material sweeps through them. 

Stretching, shearing, divergence and curl 

A ductile flow regime possesses three important attri- 
butes: gradients, divergence and curl (Schey 1973), 
represented schematically in Fig. 7. Velocity gradients 
(grad) lead to stretching of the distances between par- 
ticles, rotation of lines that join them, and shearing of 
poles to planes. Divergence (div) denotes the tendency 
for isotropic expansion or contraction of material about 
a point in the flowing mass (see Talbot & Jackson 1987). 
The vertical offset of the center of the flow Mohr circle, 
the mean longitudinal strain rate ~-, represents the 
divergence, which may be centrifugal or centripetal. The 
Laplacian is a measure of the gradient in the magnitude 
of the divergence in a flowing mass. Divergent flow and 
Laplacians are relevant to the understanding of high 
strain zones with non-parallel boundaries such as 
spreading thrust nappes. 

Vorticity is a description of the way material rotates 

Fig. 7. Schematic representation of gradient, divergence and curl. 

while it is deforming. Vorticity is recorded by thehori-  
zontal offset of the center of the flow Mohr circle, gt. It is 
an unfortunate fact of history that vorticity in classical 
mechanics is defined in terms of a mathematical function 
called the curl of the velocity fi__eld, and is twice_the 
physically meaningful quantity, 4. We here define & as 
the geologist's vorticity. Engineer's vorticity, defined as 
the velocity field's curl, is thus twice geologist's vorticity, 
24.  This is inversely analogous to the case of geologist's 
shear strain y vs engineer's shear strain y/2. Vortical flow 
is applicable, for example, to deforming and rotating 
clasts within a matrix of less vortical flow regime. 

MEASUREMENT OF VORTICITY 

To evaluate vorticity in rocks, one may choose from 
three potential reference frames: the finite strain axes 
(Elliott 1972); the infinitesimal strain axes (Lister & 
Williams 1983); or the shear zone boundary (this work). 
Infinitesimal axes are usually chosen in theoretical work 
(e.g. Lister & Williams 1983), based on the argument 
that fabrics are sensitive to the instantaneous directions 
of maximum extension. However, in practice the geolo- 
gist often has to measure vorticity relative to the only 
available visible markers, namely, the shear zone 
boundary and its normal for an external reference 
frame, and the foliation plus the normal to foliation for 
an internal reference frame. Provided the reference 
frame itself is not rotating--a phenomenon called spin 
(Truesdell 1954, Lister & Williams 1983), it does not 
matter which is chosen; Fig. 6 shows that the mean rate 
of rotation of all pairs of perpendicular lines is the same. 
However, if the shear zone's wall rock is deforming, 
then only that portion of the vorticity which is internal to 
the system is measured. The internal vorticity of a 
flowing mass is strictly defined as the rate at which 
material sweeps through the infinitesimal extension axes 
el, e2. We may not know whether a particular fabric 
tracks the finite or infinitesimal principal directions so 
internal vorticity may be difficult to quantify. However, 
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the sense of rotation is all that is measured in practice 
and so the choice of foliation as an ad hoc internal 
reference frame should not present a problem. 

Kinematic vorticity number 

Internal vorticity is positive or forward directed when 
material sweeps through the reference axes in the direc- 
tion in which they are themselves rotating, otherwise it is 
negative or backward. For positive cases, it is useful to 
further classify vortical flow regimes in two dimensions 
by the amount of vorticity relative to the amount of 
longitudinal strain. The commonest measure of this 
ratio is the kinematic vorticity number Wn (Truesdeil 
1954), which can be defined in several ways; most 
simply, it is the cosine of the angle v between the 
eigenvectors (Bobyarchick 1986) (Fig. 8), 

W. = cos (v). (1) 

In the case of progressive simple shear, Wn = 
cos 0 = 1.0. This is consistent with the fact that the flow 
Mohr circle touches the reference axis at one point only. 
In the case of sub-simple shear, W. has a value between 
0.0 and 1.0; correspondingly there are two non- 
orthogonal eigenvectors of the flow Mohr circle. 

According to Means et al. (1980), petrofabric devel- 
opment may be controlled by the kinematic vorticity 
number of the flow immediately prior to the fossilization 
of the fabric. This relationship has been demonstrated to 
hold for calcite lattice preferred orientations (Wenk et 

~///////~ 
I ~~  (b) 

Fig. 8. Mohr and geographical space representat ions of kinematic 
vorticity number  W n = cos v, where v is angle between eigenvectors 
(after Bobyarchick 1986). Dextral sub-simple shear zone in (a) is 

narrowing and in (b) is broadening. 

al. 1987), but quartz fabrics appear to be more com- 
plexly related to Wn (Schmid & Casey 1986). 

Acceleration 

In rigid-body mechanics, it is not sufficient to describe 
the position and velocity of a particle; for a full descrip- 
tion its acceleration is also required. Similarly, finite 
strain and flow are only a partial description of a rock's 
deformation; acceleration completes the story. In kine- 
matic studies it is usual to assume, for the sake of 
simplicity, that the flow regime remains constant with 
time, but this is unlikely to be true in general. Changes 
are inevitable at the start and end of a tectonic event and 
where the boundaries of a high strain zone are curved. 
Acceleration is critically important in kinematic studies 
because the consequent change in strain rates may alter 
the operative deformation mechanisms. Microstruc- 
tures attributed to a change in P-Tenvironment may be 
due instead to acceleration or deceleration of defor- 
mation. Furthermore, we do not know whether it is the 
maximum displacement rate (long axis of the flow 
ellipse), maximum extension rate (vertical coordinate 
on the flow Mohr circle), maximum shear strain rate 
(diameter of the flow Mohr circle) or other quantity 
(e.g. mean displacement rate) that controls the choice of 
deformation mechanisms. 

If velocity gradients change with time, the flow be- 
comes unsteady or accelerating and the flow Mohr 
circle's size and position is a function of time. An 
accelerating deformation is represented by an acceler- 
ation Mohr circle in ~/6~ space (Fig. 9a). Change in the 
divergence of the flow is recorded by the vertical offset 
of the acceleration Mohr circle along the ~ axis. This 
means that the rate of dilatation, or rate of inflation, is 
speeding up or slowing down. A horizontal shift of the 
Mohr circle's center represents a spinning deformation 
in which the principal stretching directions change with 
time. The rate of spinning is given by the difference 
between internal vorticity and total vorticity &, per unit 
time. 

Acceleration and rotation reversals 

For steady sub-simple flow regimes, the eigenvectors 
of finite strain and flow are parallel. These eigenvectors 
are not merely directions of no net rotation, rather they 
are directions which have never rotated throughout 
deformation. This distinction is important for fabric 
considerations. In nature, it is likely that either one or 
both of the components of a sub-simple shear will grow 
or decay with time. For example, a constant progressive 
simple shear in an overthrust orientation may be accom- 
panied by a gradual build-up of vertical pure shear due 
to the advance of an overlying thrust sheet, or by the 
decay of pure shear due to erosional removal of over- 
burden. Alternatively, overburden may generate a 
growing coaxial spreading flow in a thrust sheet during 
the commencement of ramping and accompanying shear 
deformation. The waning stages of a deformation event 
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(a) (b) (c) ~ (d) 

Fig. 9. Representation of acceleration using Mohr circles. (a) Vertical offset of circle on i//i axes represents an inflating 
deformation in which there is a change in divergence. Horizontal offset represents a spinning deformation in which there is a 
change in the principal flow directions. (b)-(d) Flow Mohr circles for the same cumulative deformation but with different 
flow histories. Only the reference diameters of early Mohr circles are drawn for the sake of clarity. (b) Constant flow regime 
in which eigenvectors, and thus reference diameters, remain parallel. (c) Coaxial component of flow builds up faster than 

the vortical component. (d) Vortical component builds up faster than non-coaxial flow component. 

may also involve different rates of decline in the pure 
and simple components of progressive general shear. 
The consequences of accelerating flow regimes are illus- 
trated using the series of Mohr circles in Figs. 9(b)-(d). 
There are three degrees of freedom which can be rep- 
resented by the changes in center and radius of the 
circle. For the sake of clarity, only one 'reference' 
diameter of smaller Mohr circles is shown. The full circle 
is shown for the last state recorded. 

Figure 9(b) illustrates the case of a constant flow 
regime. Because the eigenvectors must remain constant 
in orientation, successive reference diameters of the 
Mohr circles are parallel. In Fig. 9(c) the build-up of the 
coaxial component of flow exceeds that of the non- 
coaxial component. Successive reference diameters are 
more steeply inclined, implying a larger angle between 
the eigenvectors. In contrast, Fig. 9(d) shows the grad- 
ual decrease in this angle resulting from a greater build- 
up of non-coaxial flow. The final state is identical in each 
case. Note that all directions oriented between the first 
increment and final cumulative reference diameters 
have undergone a transient reversal in the signs of their 
angular velocities. The result is recovery of initial orien- 
tations followed by further rotation. Lines oriented 
between the final cumulative and final incremental refer- 
ence diameter have reversed their sense of rotation, but 
have not yet recovered their initial orientations (Fig. 
10). This situation is reminiscent of the shear of lines as a 
function of orientation (Fig. 3), and the lengthening of 
lines that initially shorten. 

PRACTICAL ANALYSIS OF GENERAL SHEAR 

In order to determine the complete deformation his- 
tory of a rock, the relative contributions of pure shear, 

simple shear, rigid rotation and dilatation during each 
increment of time must be evaluated. This information is 
essential for meaningful pressure-temperature-time- 
deformation paths. Finite strain markers record the 
geometry of the final state only. Kinematic analysis is the 
search for indicators of the flow regime operative during 
deformation. Of particular interest are fabrics that re- 
veal the sense of vorticity of the flow. In special circum- 
stances, it may be possible to evaluate the kinematic 
vorticity number. 

One of the oldest concepts of structural geology is the 
symmetry principle of Curie (1894). It implies that 
symmetric fabric patterns result from coaxial progress- 
ive deformation of a random protolith fabric, whereas 
asymmetry may be expected to result from a vortical 
deformation path. The association between fabric sym- 
metry and deformation path is not, however, that simple 
(Choukroune et al. 1987). It is important to distinguish 
between passive and active strain markers, between 
finite and infinitesimal markers, and between material 
and non-material lines. 

Foliat ion as a strain m a r k e r  

The simplest method for the determination of strain in 
a shear zone assumes that (i) the cross-sectional trace of 

(a) 
" foliation 

"".. 
baseline 

Fig. 10. Reversal of rotation sense of lines in cumulative deformation. 
Arrows indicate the direction of rotation. See text for discussion. 

(b) / . . . - ~  

Fig. 11. Relationship between foliation direction tp' and shear strain y 
in (a) simple shear zone, (b) zone of sub-simple shear. Dashed lines are 

traces of circular sections of the strain ellipsoid. 
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foliation represents the long axis of the strain ellipse q~' 
and (ii) the strain is ideal simple shear (Fig. 11a). The 
equations for simple shear are: 

7 = 2/tan 2~' (Ramsay & Graham 1970) (2) 

S1 = cot ~' (3) 

$2 = tan ~O' (4) 

and 

7 = 2 sinh E, (5) 

where 

E = (1/2) In ($1/$2) (Nadai 1963). (6) 

Because the angle q~' between the foliation and shear 
zone boundary is measured in the rock, these calcu- 
lations can be carried out rapidly on field location. The 
main drawback is the assumption of ideal simple shear. 
If the deformation is a sub-simple shear as indicated in 
Fig. l l(b), the method is invalid and angle q~' may 
become very small at quite low strain intensities. 

Asymmetry of SNFLS and SNILS 

One way to determine the relative contributions of 
pure and simple shear during steady flow is to find the 
surfaces of no finite longitudinal strain (SNFLS) and 
compare these with known surfaces of no incremental 
longitudinal strain (SNILS; de Sitter 1956, Flinn 1962, 
Ramsay 1967, Talbot 1970, Passchier 1988). Ramsay 
(1967) showed that in progressive pure shear, the 
SNFLS and SNILS are coaxial. Lines that progressively 
shorten (folds), lines that originally shorten and then 
lengthen (boundinaged folds), and lines that progress- 
ively lengthen (boudinage), are developed symmetri- 
cally about the principal axes. For progressive simple 
shear and sub-simple shear, SNFLS and SNILS are 
oblique to each other so that there are two asymmetri- 
cally developed zones of boudinaged folds; the orien- 
tation distribution of these can be measured in the field 
and can distinguish between a predominantly pure- 
shearing or a simple-shearing history. The relative size 
of the asymmetrical zones may even permit an estimate 
of the relative contributions of the two. For progressive 
super-simple shear, there is a zone of lines that lengthen 
first and then shorten, resulting for example in the 
folding of previously boudinaged veins. 

Orientation of eigenvectors 

In Fig. 12(a), polar co-ordinates (~1, 0) and (~2, 0) on 
the Mohr circle represent the two non-rotating lines 
(eigenvectors) in the rock and the eigenvalues ~t and ~2 
are the principal values of the irrotational strain com- 
ponent. T is the transverse component of deformation. 
The angle 2v, measured around the arc between ~1 and 
~2 in Mohr space, provides the angle v between these 
two eigenvectors in real space, where 

tan (v) = (~i - ~2)/T. (7) 

The orientation of one eigenvector is fixed to the flow 

(a) (b) 
r . ~ x ~ ~  r.~ 

Fig. 12. (a) Relationship between the eigenvectors of sub-simple shear 
in Mohr space and geographical space. Equation (7) follows from this 
geometry. (b) Proposed relation between synthetic (C') and antithetic 
(C ~) shear band orientations and directions of maximum shear strain 

rate ~. 

plane of the simple shear component, but the other 
eigenvector has an orientation that is dependent on the 
pure shear and simple shear contributions to sub-simple 
shear. The smaller the irrotational component, the 
smaller is the angle between ~1 and ~2. The important 
conclusion is that determination of the eigenvectors in a 
general shear zone may lead to information about the 
relative contributions of irrotationai vs rotational strain. 
Much recent effort has centered on ways of identifying 
the eigenvectors (Ramberg 1975, Ghosh & Ramberg 
1976, Passchier 1987). 

Shear bands 

Shear bands have been used by a number of workers 
to obtain sense of shear (e.g. Weijermars & Rondeel 
1984, Bobyarchick 1986, Dennis & Secor 1987). 
Bobyarchick (1986) suggested that the inclined eigen- 
vector ~2 may represent the orientation of shear bands in 
natural shear zones. If correct, then the measured angle 
between shear bands and the overall flow plane could be 
used to estimate the relative contributions of pure and 
simple shear in natural examples. However, the eigen- 
vector directions are not directions of maximum shear 
strain (in fact, they may undergo quite low angular 
shears) and the inclined eigenvector is an unstable 
direction where there is extension parallel to the shear 
zone boundary and shortening perpendicular to it. If a 
plane is deflected slightly from this direction, it will 
continue to rotate away progressively. 

Conjugate shear bands (extensional crenulation 
cleavage) in zones of non-coaxial strain have been docu- 
mented by several workers. Platt & Vissers (1980) 
suggested that conjugate sets might indicate a coaxial 
flow regime, but subsequently Platt (1984) showed that 
conjugate sets could occur if there was deviation from 
progressive simple shear. Harris & Cobbold (1985) 
showed the development of conjugate shear bands dur- 
ing bulk simple shearing if sliding was permitted along 
pre-existing foliation planes. Behrmann (1987) reported 
the occurrence of conjugate sets of shear bands in a 
mylonite from the base of a known thrust nappe. The 
mylonite gave a consistent shear sense using quartz 
petrofabric data, and was thought to be developed in a 
non-coaxial (sub-simple shear) regime. One shear band 
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set was inclined at 30 ° towards the flow direction and 
sheared synthetically; the other was inclined at 60 ° 
upstream and sheared antithetically. These angles 
suggest a possible association with the directions of 
maximum shear strain rate (Fig. 12b) and not with the 
eigenvector directions. 

In view of the alternative interpretations, shear band 
orientations are, at best, semi-quantitative indicators of 
the shear components. If shear bands approximately 
bisect the angle between the eigenvectors in zones of 
relatively low strain, then they will become progress- 
ively rotated into alignment with the flow plane at higher 
strains. 

Rotation of rigid spherical objects 

I=- 
infinitesimal strain fabric 

/ / 
/ /  
/ /  

/ 
/ ,/ / / / 

(a) Simple shear 

finite strain fabric w 

(b) Sub-simple shear 

Fig. 14. Illustration of possible ambiguities arising from spiral in- 
clusion trails in rigid porphyroclasts such as garnets. (a) Conventional 
trails result from garnet rotating more rapidly than foliation. (b) 
Relatively rapid rotation of foliation during sub-simple shear may be 

wrongly interpreted, 

Rigid quasi-spherical objects such as garnet crystals or 
pyrite framboids are excellent kinematic indicators 
(Rosenfeld 1968, Schoneveld 1977), but the relationship 
between internal and external fabrics may be complex. 
From the traditional interpretation of snowball garnets 
(e.g. Schoneveld 1977), the porphyroblast overgrows 
the existing foliation as the garnet rotates. The internal 
fabric is dragged around as the garnet rotates faster than 
the foliation. In progressive simple shear the rigid 
rotation rate for rigid objects is half the instantaneous 
shear strain rate (Fig. 13): 

- 7 (8) 
2 

This is because half of the angular shear experienced by 
the pole to the shear zone is a result of rigid rotation and 
the other half is caused by the pure shear at 45 ° to the 
shear zone boundary. In progressive pure shear, the 
matrix flows symmetrically around rigid obstructions 
and applies equal fiber loading stress to each side, so the 
object does not rotate. Applying the same arguments to 
general shear, rigid spheres such as garnets are unaffec- 
ted by the pure shear component of deformation and 
rotate only in response to the rigid rotation component 
(Ghosh & Ramberg 1976). 

At low finite strains, foliation lags behind a spherical 

CO 
Fig. 13. Simple shear may be factored into a component of rigid 
rotation through angle to whose tangent is half the shear strain, and a 
pure shear component oblique to reference axes. The latter com- 
ponent adds to the rotation of shear zone's pole but cancels the zone 
boundary's rotation. A circular rigid object responds to rigid rotation 
to but not to the irrotational component of deformation. Note that this 
argument may be applied to every increment of deformation and thus 
holds even where actual deformation path is not that represented by 

arrows. 

rigid porphyroblast in simple shear (Fig. 14a). This is 
self-evident for a steady state foliation, which by defi- 
nition does not rotate. Where the foliation tracks the 
finite strain axes, it's rotation rate decelerates as it 
approaches parallelism with the shear zone boundary 
and so the total rotation of the rigid grain must exceed 
that of the foliation. If the shear zone undergoes sub- 
simple shear and broadens with time, then the foliation 
remains at a high angle to the zone boundary and 
enhances the rotational pattern of inclusions. However, 
if there is a component of pure shear acting to narrow the 
shear zone and the foliation tracks the finite strain axes, 
then the foliation may rotate faster than the rigid object 
provided the latter does not rotate more than 90 °. In a 
domain of super-simple shear that includes a rigid 
object, a foliation which tracks the finite strain direction 
may rotate faster than the object at all times, resulting in 
a false interpretation of the sense of shear even at high 
strain. Interpretation of snowball garnets thus relies 
heavily on the correct interpretation of the relationship 
between internal and external fabrics. 

Curvature of fibers around rigid inclusions can be used 
to obtain the rotational component of strain provided 
there is a clear distinction between face-controlled fibers 
and those that track the incremental stretch direction 
(Ramsay 1980, Ramsay & Huber 1987). A difficulty 
arises, however, if the fibers do not form parallel to the 
incremental stretch direction (Urai et al. 1991). 

Rotation of rigid elongate objects 

Reverse rotations of objects are generally possible in 
homogeneous flow regimes only if the deformation is 
sub-simple shear, the objects are relatively rigid, and 
they are more elongate than a critical value. As shown 
by Gay (1968) and Ghosh & Ramberg (1976), there is a 
simple relationship between the rotation angle of rigid 
spherical objects and that of elongate objects in general 
shear zones with constant flow parameters, i.e. where 
the eigenvectors remain constant throughout. The more 
elongate objects are more susceptible to the pure shear 
component and tend to rotate both forwards and back- 
wards. By measuring the angle of rotation of rigid 
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Fig. 15. (a) Complex o-6 feldspar grain from mylonitic granodiorite,  Pinalefio Mountains, Arizona. Both o and b tails step 
up to left and become parallel to foliation, consistent with sinistral shear sense. Plane light. Scale bar is 250gin. (b) Outcrop 
photograph of a and ~ feldspar grains on same flow plane in amphibolite gneiss, Parry Sound, Ontario. Tails on all 
porphyroclast systems step up to left and become parallel to foliation, consistcnt with sinistral shcar sense. Coin diamctcr is 

2.4 cm. Sec tcxt for discussion. 
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reference (R,~) 
axis ,~/~, 

/ ~ ' /  deformation 
V path 

Fig. 17. Plot of non-coaxial deformation path on the hyperbolic net. 
Stretch and rotation factors are represented by pie segment. 

E 

Fig. 16. The hyperbolic net (see De Paor 1988 for a larger version). R is 
axial ratio, shape factor E = (1/2) In (R). 

(I 

(~ 

)aseline 

I 

/ / .................... 
baseline 

Fig. 18. Behavior of rigid objects plotted on the hyperbolic net. Thin straight lines are eigenvectors. Thin curved lines 
represent trajectories, arrows indicate direction of rotation. Note back rotation on concave side of hyperbola (heavy line). 
Stable end orientations marked by representative ellipse shapes. (a) Narrowing sub-simple shear, (b) Broadening sub- 

simple shear. Squares represent undeformed states, and parallelograms deformed states. 
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objects of known axial ratio, such as garnets that contain 
inclusions, with respect to the foliation around them it 
may be possible to estimate Wn- This technique was 
successfully applied by Vissers (1989) to obtain Wn and 
the total strain from the rotation of pre-mylonitic gar- 
nets in a schist (see also Vissers 1987). 

a and b grains 

Porphyroclasts with recrystallized tails are extremely 
useful for sense of shear determination in high strain 
zones (see Simpson & Schmid 1983, Lister & Snoke 
1984, Passchier & Simpson 1986). The sense of shear is 
given by the sense of 'stair-stepping' of the tails on either 
side of the porphyroclast. Tails that step up to the right 
give a dextral shear sense. Grains with wedge-shaped 
tails are o grains. Grains with very narrow tails that cross 
the reference plane are b grains. The distinction is more 
than pedantic. 

Passchier & Simpson (1986) showed that the presence 
of o or b tails depends on the rate of recrystallization/~ to 
shear strain rate ~. If R/~ is high, the flow of recrystal- 
lized material in the tails away from the porphyroclast is 
continually supplemented by the production of new 
recrystallized grains, resulting in the wedge-shaped tails 
of a grains. If R/~ is low, there is insufficient new 
recrystallized material added to the tail to form a wedge 
and the narrow tail that results becomes dragged around 
with the rotating b-type host grain. The 6 grains are 
usually only found in high strain, ultramylonite zones. 

Passchier (1988) suggested that the degree of 'stair- 
stepping' of wedge-shaped recrystallized tails on ty-type 
porphyroclasts can be used to determine Wn. The 
method is based on the assumption that o grains and 
mylonite foliations give the instantaneous stretching 
direction and the eigenvector for flow, respectively, 
regardless of the directions of the diplacement axes. 

Complex o-6 grains 

Some porphyroclast systems have more than one set 
of tails (e.g. Fig. 15a, and see Davidson et al. 1982, 
Hanmer 1984). Passchier & Simpson (1986) reproduced 
these by starting with a b grain (low /~/~) and then 
varying the R/~ parameters so that R increased with 
respect to ~. Natural examples imply that: (a) the tem- 
perature rose during a constant strain rate deformation; 
(b) the shear zone remained at the same temperature 
during a decreasing strain rate deformation; or (c) the 
shear zone maintained a constant temperature and 
strain rate, but the grain itself was initially elliptical in 
cross-section, and therefore changed its rotation rate 
during deformation. 

The existence of a, b and complex porphyroclast 
systems (Passchier & Simpson 1986) in the same outcrop 
is not uncommon (e.g. Fig. 15b). Such occurrences 
preclude Bell & Johnson's (1992) explanation of b grain 
tail geometry as the result of three separate, mutually 
perpendicular orogenies. If all grains were identical in 
mineralogy and were spherical to start with, then cr 

grains would indicate a high k/~, and b grains would 
indicate a low/~/~) (Passchier & Simpson 1986). How- 
ever, if the two types of grains are of the same mineral 
and in the same rock then they cannot reflect great 
differences in the tempeature-controlled recrystalliza- 
tion rate. If they are on the same flow plane, or nearly 
so, as in Fig. 15(b), then a large gradient in strain rate is 
also unlikely. One way to form grain associations like 
the one in Fig. 15(b) is to start with grains of very 
different axial ratio and/or orientation. 

Analysis of strain and strain path using the hyperbolic net 

Building on the pioneering work of Ramberg (1975) 
and Ghosh & Ramberg (1976), we now demonstrate 
that the concepts of finite general shear and porphyro- 
clast morphology provide a framework in which a great 
variety of strain markers and kinematic indicators may 
be understood. Porphyroclasts are indicators of both 
strain and flow, and the hyperbolic net of De Paor (1988) 
can be used to analyze the vorticity and strain path as 
well as the finite strain state. 

De Paor (1988) described the use of the hyperbolic net 
for the implementation of the Rf/~ technique of Ramsay 
(1967), Dunnet (1969) and Dunnet & Siddans (1971), 
the shape factor grid of Elliott (1970), and the 0-curve 
method of Lisle (1977, 1985). Strained objects are 
assumed to be perfectly passive ellipses in all of these 
words. The hyperbolic net is a polar graph of ellipse 
shape versus orientation (Fig. 16). Orientation ~ is 
measured around the periphery of the net and ellipse 
shape is plotted radially outward from the origin. Dia- 
metrically opposite points on this plot represent the 
same ellipse but there are two scales for describing 
ellipse shape: axial ratio R and shape factor E = 1/2 
In (R) (see De Paor 1988 for details). Note that a circle 
(axial ratio = 1, shape factor = 0) plots at the origin. 
Two sets of hyperbolae adorn the hyperbolic net. Those 
with vertical and horizontal asymptotes and diagonal 
vertices are trajectories that trace the paths of ellipses 
undergoing strain in the direction of the net axis. Hyper- 
bolae with vertical and horizontal vertices and non- 
orthogonal asymptotes are loci of equal incremental 
strain and serve to determine the 50%-of-data curve 
(Dunnet 1969), also known as the 0 = 45 ° curve (Lisle 
1977, 1985). 

The hyperbolic net is used with a tracing overlay in a 
manner analogous to a steronet. To represent a strain 
path, the cumulative finite strain ellipse is plotted for 
successive points in time. A coaxial deformation in- 
volves no change in strain ellipse orientation and so is 
recorded by a straight path directed radially out from the 
origin. Increments of rigid rotation change the orien- 
tation but not the shape of the strain ellipse and so plot 
on a circular arc. Shear in general follows a curved path 
(Fig. 17) from the initial point (1, q~) to the point 
representing the final state (R, q~'). The effects of an 
increment of deformation upon a pre-existing ellipse 
may be modelled by applying small increments of irrota- 
tional stretch and rigid rotation. The ellipse is moved 
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along a hyperbolic trajectory to simulate stretch and the 
tracing overlay is rotated to simulate rigid rotation. 

Analysis of vorticity using the hyperbolic net 

The hyperbolic net can also be used to determine 
another hyperbolic locus called the 'stable-end' curve 
which gives a simple method for obtaining Wn from rigid 
elliptical porphyroclasts in mylonites. The basis for this 
method is the theoretical work of Jeffrey (1923), Ghosh 
& Ramberg (1976), Freeman (1985) and Passchier 
(1987) concerning the motion of ellipsoidal, perfectly 
rigid particles in steady non-coaxial flow. Elongate 
objects inclined downstream in a shear zone tend to 
rotate backward if there is positive extension along the 
shear zone boundary, i.e. the shear zone is narrowing 
(Fig. 18a), and elongate objects inclined upstream tend 
to rotate backward if there is a contraction along the 
boundary, i.e. the shear zone is broadening (Fig. 18b). 
As illustrated in Fig. 18, lines in all orientations in the 
acute angle between the eigenvectors rotate backwards, 
but not all elliptical objects do so. A rigid sphere (R = 1) 
is unaffected by the irrotational component of general 
shear and responds only to the rotational component. 
Therefore it will rotate in the direction of shear, albeit 
more slowly than the shear strain rate (for simple shear it 
would rotate at half that rate). Because all lines in the 
acute field rotate backwards and spheres rotate for-  
wards, there must be critically shaped and oriented 
elliptical objects (R, q~) that do not rotate at all, and a 
minimum axial ratio below which all objects rotate with 
the flow. 

In the Appendix we provide proof that all rigid 
ellipses which do not rotate plot on a hyperbola asymp- 
totic to the eigenvectors. Half of these are unstable 
positions from which objects flee given a slight nudge. 
The other half are the 'stable end' positions (those 
marked by a dot on Fig. 18) (Ghosh & Ramberg 1976, 
Freeman 1985, Passchier 1987). The orientation of a 
stable ellipSe is a function of its axial ratio and of the 
kinematic vorticity number Wn. The minimum axial 
ratio, R m, for stable orientation plots at the apex of the 
hyperbola and is related to Wn by 

Wn =- (Rm - ]/Rm)/(RmW1/Rm). (9) 

The orientation q~m of this individual is also related to 
flOW, 

W n = cos (2q~m) (10a) 

= cos (v). (10b) 

All other stably oriented ellipses plot along one limb of 
the hyperbola, whose formula is 

B = Wn/cOs 2q~, (11) 

where q~ is measured relative to q~,, and B is an alterna- 
tive description of ellipticity, related to the axial ratio, 
R, and Elliott shape factor, E, respectively by, 

B = (R - 1/R)/(R + 1/R) (12a) 
and 

(a) 

(b) 

Fig. 19. Behavior of deformable objects in (a) narrowing sub-simple 
shear, and (b) broadening sub-simple shear, depicted schematically on 
the hyperbolic net. Details of trajectories (thin curved lines) depend 
on the ductility of porphyroclasts, e 1 represents the infinitesimal 

stretching axis. Other features as in Fig. 18. 

B = tanh (2E) .  (12b) 

Equation (11) is analogous to equation (A22) of De Paor 
(1988), therefore the hyperbolic locus of stable end 
positions is given by fitting a curve from the hyperbolic 
net asymptotically between the flow eigenvectors. 

Rotation of deformable objects 

Deformable ellipsoidal objects may possess internal 
vorticity which differs from that of the bulk flow. During 
deformation, their long axes and axial ratios change and 
a succession of new material lines move through the 
immaterial axes of the ellipsoid. If objects are not 
perfectly ellipsoidal, the migration of their axes may be 
quite complex. We can never determine the vorticity of a 
single object, but nevertheless we can use a set of 
deformable objects to determine the bulk flow vorticity. 
The behavior in cross-section of deformable ellipsoidal 
grains is schematically illustrated in Fig. 19. Following 
Lisle (1985), we assume that the grain's rotation axis 
remains perpendicular to the flow direction (cf. Lister & 
Price 1978). The obvious difference from Fig. 19 is that 
trajectories are no longer circular arcs. Elliptical cross- 
sections become greater or smaller in axial ratio depend- 
ing on the object's orientation relative to the fields of 
extensional and contractional infinitesmal strain. An 
object initially plotting on the concave side of the hyper- 
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bola rotates backward while deforming until it reaches 
its instantaneous stable end configuration. It then pro- 
ceeds to deform while rotating and follows a trajectory 
that coincides with the hyperbola. Eventually, all back- 
rotated objects become extremely stretched and 
oriented virtually parallel to the stable eigenvector, i.e. 
parallel to the foliation. Deformable objects that in- 
itially plot on the convex side of the hyperbola display 
complex trajectories. Most rotate forward, either spin- 
ning rapidly and pulsating in axial ratio if they were 
intially relatively fat, or slowing down and reaching the 
hyperbola if they were elongate. However, some objects 
that plot near the hyperbola undergo a period of back- 
rotation as their axes spin backwards and sweep through 
material lines. 

Practical implementation 

Axial ratios R and orientations ~ of porphyroclasts 
are measured relative to the shear zone boundary, or 
relative to foliation in a narrowing shear zone in which 
shear strain is judged to be so high that foliation and 
boundary are virtually parallel. Axial ratio and orien- 
tation data are plotted on the hyperbolic net, along with 
shear sense, using symbols to distinguish back- and 
forward-rotated o grains, 6 and complex 6-0 grains. Just 
as with steronet data, the points when plotted are quite 
independent of their location in the rock. The net is 
rotated like a stereonet and a hyperbola (representing 
the locus of stable ends) is drawn asymptotic to the shear 
zone boundary direction so as to enclose the field of 
back-rotated or o-type grains and then the hyperbola's 
other asymptote is drawn. This second asymptote is 
inferred to be the inclined eigenvector and the cosine of 
its inclination v to the flow plane is Wn (equation 1). 

Takagi & Ito (1988) and Malaveille & Ritz (1989) 
have described ellipsoidal porphyroclasts that are in- 
clined downstream and have o tails attached to their 
broad sides. They record backward rotation and plot 
inside the hyperbola between the flow eigenvectors (Fig. 
20). Objects such as elongate garnets that record back- 
ward motion also plot in this field. 6 grains, which 
indicate continuous forward rotation, occupy the field 
outside of the hyperbola. Complex 0--6 grains also 
indicate continuous forward motion, with formation of 
the o trails when the rotation of 6 grains slows down as 
they approach the stable end orientation (Fig. 20). The 
upstream-inclined mica 'fish' of Lister & Snoke (1984) 
commonly have extremely thin and straight tails, or no 
tails at all, consistent with a generally low/~/~. They may 
have rotated forward without producing tails until they 
approached their stable end orientation where rotation 
rates would be slow enough to allow recrystallization to 
form long, straight tails. Ellipsoidal a grains that have 
tails attached to their narrow ends and that are inclined 
upstream may have had starting orientations close to 
their final orientations. In addition, deformable 
upstream-inclined grains are subject to slight back- 
rotation in the zone of complexity where the trajectories 
cross the stable eigenvector (Figs. 19 and 20). Other 

microstructures that fit this model include myrmekitic 
feldspars (Simpson & Wintsch 1986), which are 
expected to be in stable end orientations, and fractured 
feldspars which can form in a variety of orientations but 
which are most likely to fracture when their cleavage 
planes are aligned along directions of maximum shear 
strain rate (Fig. 20). 

One problem with this approach is that there may be 
little data in the region around the unstable eigenvector 
because all elongate objects rotate away from this line. 
Therefore, just as in shear sense determination where 
correct interpretation depends on the statistical distri- 
bution of grains, a large population of grains is needed, 
the maximum combination of methods to determine Wn 
should be used, and the foliation should represent a 
single, progressive deformation. The analysis should 
include o and 6 or complex 6-0 type porphyroclasts, and 
there must be relatively equant grains in addition to 
highly elongate ones as the former give more accurate 
results. Thin sections should be cut thicker than normal 
to reveal the orientation of the porphyroclast in the third 
dimension; individuals that are cut obliquely or that 
impinge upon their neighbors should be rejected (Pass- 
chier 1987). The key to successful application of this 
technique is the recognition in the rock of objects that: 
(1) are rigid vs those that are deformable; (2) are in their 
stable end positions vs 'immature individuals'; and (3) 
have rotated backward vs those (more common) that 
have rotated forward. 

Narrowing vs broadening shear zones can be dis- 
tinguished on the basis of their preserved microstruc- 
tures only if the shear zone boundary orientation is 
known (Fig. 20). In the case of broadening zones, the 
stable eigenvector and therefore the foliation, is main- 
tained at a significant angle to the zone boundary which 
is now the unstable eigenvector. 

Flow eddies and fabric disturbance 

The existence of stiff or relatively ductile grains in a 
flowing matrix leads to a complex, locally spinning flow 
pattern. Figure 21(a) illustrates the streamlines of a 
flowing mass that includes a stiff grain, itself undergoing 
super-simple shear, in a relatively ductile matrix under- 
going sub-simple shear (the opposite case, Fig. 21b, is of 
mainly theoretical interest). The pattern is centered on 
the grain causing the disturbance. The important impli- 
cation of Fig. 21(a) is the disturbance of the ideal sub- 
simple shear flow pattern around the boundary of the 
stiff grain. Drag on the grain's surface, combined with 
deflection of the flow lines, may lead to a situation in 
which smaller grains in a satellite position undergo a 
local rotational couple (Fig. 21a). Rotation may be 
opposite to that of the main vortex, even where grains 
are circular or near-circular in cross-section. 

Asymmetric boudins and sheath folds 

The distribution of asymmetric rigid or deformable 
boudins and folds may also be controlled by eigenvector 
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Fig. 20. Synoptic diagram of meso- and micro-scale structures in a dextral sub-simple shear zone with (a) W n = 0.75 
(narrowing) and (b) W n = -0 .75 (broadening). Cartoons represent various features in their approximate position and/or 
orientation on the hyperbolic net. Hyperbolae are stable ellipse orientations as in Fig. 18. Solid lines are eigenvectors, 

dotted lines are direction of maximum shear strain rate. See text for discussion. 

orientations. If a compositionally stiffer band is parallel 
to the stable eigenvector (Figs. 22a-f), it may become 
boudinaged. Subsequent rotation of boudin fragments 
may be in the same sense as the shearing for brittle rigid 
boudinage or backward in the case of deformable frag- 
ments (see Hanmer 1986). If a rigid layer (Fig. 22a) 
breaks into rigid blocks (Fig. 22b), the points rep- 
resenting block shapes on the hyperbolic net are shifted 
towards the origin and thus enter the field of forward 
rotation (Fig. 22c). Rotations cease when block orien- 
tations again plot on the locus of stable ends. A stiff but 
more deformable layer (Fig. 22d) may break into 
deformable fragments (Fig. 22e), which then back- 
rotate (Fig. 22f) due to counterclockwise spin of their 
axes through material lines, as may be demonstrated by 
drawing elliptical fragment outlines on a card deck and 
then shearing the cards. The corresponding trajectory 
on the hyperbolic net is illustrated by the arrows in Fig. 

22(f). If there is a planar compositional band parallel to 
the unstable eigenvector (Fig. 22g) then asymmetric 
folds may develop during shear (Fig. 22b), which may 
subsequently amplify into sheath folds. 

Strain partit ioning 

Strain in shear zones is frequently partitioned into 
bands of intense shear and intervening lithons of less 
intense shear (e.g. Coward 1976, Simpson 1983, Bell 
1986). Bell & Johnson (1992) and Bell et al. (1992 and 
self-references therein) have suggested that porphyro- 
blasts within such lithons do not rotate (but see Passchier 
et al. 1992). Bell & Johnson (1992) have explained such 
features as ~ grains by invoking a series of three different 
and orthogonal phases of deformation (their fig. 25), but 
this is refuted by the occurrence of o and 6 grains on the 
same flow plane. Even in pure shear, elongate grains 
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Fig. 21. (a) Disturbance of flow lines for sub-simple shear around a 
domain of super-simple shear such as a deformable porphyroclast in a 
narrowing zone. Note that trajectories represent particle paths as in 
Fig. 2, and not ellipses as in Fig. 18. Flow disturbance may cause back- 
rotation of satellite grains even if they are circular in cross section. 
Eigenvectors lie in planes of shear because there are different displace- 
ment rates along particle paths on either side (labelled 'faster' and 
'slower'). (b) Flow lines within and around a soft grain undergoing sub 

simple shear in a matrix that undergoes super simple shear. 

must rotate towards the principal stretch axis by an 
amount that depends on their axial ratio and initial 
orientation (Dunnet  1969, Ghosh & Ramberg 1976, 
Lisle 1977, 1985). In addition, three separate and ortho- 
gonal orogenic events would cause shear zone bound- 
aries to be decidedly non-planar, and yet 6 grains are 
most commonly foand in parallel-sided ultramylonite 
zones. We see no reason to invoke a special cause for 6 
grains in thick shear zones as opposed to narrow ones, 
nor do we find any inconsistencies between Bell & 
Johnson's (1992) figs. 1-3 and 10, and a single event, 
general shear history. 

Tectonic implications of  sub-simple shear 

The tectonic implications of sub-simple shear zones, 
whether narrowing or broadening must be carefully 
considered. These shear zones may occur only: (1) 
where the wall rocks to a high strain zone are able to 
deform; (2) where there is an area change in the section; 

(3) where the shear zone is curved or has non-parallel 
sides; or (4) where there is a fault between the wall rock 
and the sheared rock. For a straight, parallel-sided shear 
zone of constant cross-sectionial area, simple shear is the 
only possible deformation regime if the wall rock re- 
mains undeformed and attached (Ramsay & Graham 
1970). There are, however, several tectonic scenarios 
that provide the means for more general shear. Area 
changes may be facilitated where shear zones rise to the 
surface of the earth or where nappes spread, as often 
occurs in the internal parts of orogens. In transpression 
or transtension zones, material moves laterally into or 
out of the profile plane. In the case of extreme transpres- 
sion, the maximum principal stretch may be the axis of 
the rotational component  of deformation (Fig. 23), and 
a mineral lineation could develop orthogonal to the 
directions of tails of oblate grains (prolate grains are 
only transiently stable in this case; Passchier 1987). 
Broadening sub-simple shear zones may be dis- 
tinguished by the relatively large angle between foliation 
and shear zone boundary, even at very high strains, and 
by the occurrence of dilatational structures such as 
intrusive sheets parallel to the boundary (Escher et al. 
1975). Both broadening and narrowing shear zones may 
occur in both extensional and compressional tectonic 
settings. It is important to consider zone orientations 
relative to regional d6collements before making large- 
scale inferences from the geometry of mesoscale general 
shear deformation. 

CONCLUSIONS 

The polar Mohr constructions presented here for 
finite and infinitesimal strain, flow and acceleration, are 
ideally suited for the analysis of general shear in high 
strain zones. The kinematic vorticity number Wn is 
readily obtainable from the angle between the eigen- 
vectors, where one eigenvector is fixed to the flow plane 
of the simple shear component ,  and the orientation of 
the other depends on the pure shear contribution. 
Narrowing vs broadening sub-simple shear zones can be 
distinguished using the relationship between foliation 
and shear zone boundary. Super-simple shear is gener- 
ally confined to the region in and around deformable 
porphyroclasts. 

The hyperbolic net allows a simple and rapid analysis 
of Wn using the stable end orientations of rigid and 
deformable a, 6 and complex a-~  porphyroclasts. Other  
kinematic indicators such as myrmekitic feldspars, mica 
fish, asymmetric boudinage and calcite lattice-preferred 
orientations are consistent with this approach. Fractures 
in feldspar grains and shear bands may form along the 
directions of maximum shear strain rate and sub- 
sequently rotate with progressive strain; if formed late in 
the deformation history their orientations may allow an 
approximation of the general shear state. 
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Fig. 22. Explanation of asymmetric boudinage and fold geometry in general shear zones. (a) Initial rigid layer. 
(b) Boudinage into rigid fragments that rotate forward (c) into stable end orientations. (d) More deformable stiff layer 
breaks into deformable boudins (e). (f) Deformable fragments may rotate backwards owing to spin of their axes. (g) Stiff 
layer oriented parallel to unstable eigenvector. (h) Individual fold axial planes are sub-parallel to the shear zone boundary. 

Fig. 23. Kinematic rotation axis may be parallel to S I in a zone of 
transpression. 
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APPENDIX 

Passchier (1987) gives the following formula for the stable end 
position of a rigid elongate porphyroclast, in a general shear zone in 
which the pure shear component acts to narrow the zone: 

r/= (1/2) sin -~ { ( W , / B ) [ ~ / ( 1 - W  2) +_ X/(B 2 - W2)]}, (A1) 

where B is the shape factor, and q is the orientation of the long axis of 
the grain (Fig. AlL 

~ W n  

Fig. A1. Demonstration that stable end orientations plot on a curve 
from the hyperbolic net by showing that equation (11) of this paper is 
equivalent to Appendix equation (A1). v is the angle between asymp- 
totes, W, is apical value of radius vector B which is related to ellipse 
axial ratio R and shape factor E by equations (12a) and (12b). ¢ is the 
angular measure used in this paper. Passchier (1987) uses the alterna- 

tive angle r/. 

Translating equation (A20) of De Paor (1988) using the identity 

B = tanh (2E), (A2) 

we propose that the polar equation of the hyperbola in Fig. A1 is, 

B = Wa/cos 2q), ( l l )  

where the kinematic vorticity number W, is the value of B at the apex 
and also the cosine of the angle between the asymptotes, 

W~ = cos (v), (A3) 

The following derivation demonstrates that equation (11) of this paper 
is equivalent to equation (A1) above and provides an easier way to 
calculate W,. Note the different sense in which angles are measured in 
the paper (Fig. A1) vs Passchier (1987). 

From equation (11), substituting for 2¢, 

Wn/B = cos (v - 2r/) (A4) 

= cos v cos 2q + sin v sin 2r/ (A5) 

= W, cos 2q + sin v sin 2r/. (A6) 

Rearranging, and then squaring both sides, 

W n cos 2r/= W . / B  - sin v sin 2q (A7) 

W 2 (1 - sin e 2r/) = W2/B 2 - ( 2 W , / B )  sin v sin 2r/+ (1 - W 2) sin e 2r/ 
(AS) 

0 = W~ ( ( 1 / B ) - B )  - 2 sin v sin 2r/+ (B/Wn) sin22r/. 
(A9) 

Solving this quadratic, 

sin 2r/= [2 sin v + # ( 4  s i n2v -4 (1 -  Be))]/(2B/Wn) (A10) 

= ( W n / B ) [ ~ / ( 1 - W 2 ) + ~ / { ( 1 - W . 2 ) - ( 1 - B Z ) } ]  (Al l )  
o r  

q = (I/2) s i n - ' { ( W . / B ) [ ~ / ( 1  - W 2) ++- \ / ( B  z - we)]}. (A1) 


